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ABSTRACT 
We preseiit a novel data coinpression technique, called recursive interleaved entropy coding, tliat is based on 
recursive interleaving of variahle-to-va.riable length binary source codes. A compression module implementing 
this technique lias the same functionality as arithmetic coding and can be used as the “engine” iii various data 
compression algorithnis. The encoder compresses a bit sequence by recursively encoding groups of bits that 
have similar estimated statistics, ordering the output in a way t h t  is suited to  the decoder. As a result, the 
decoder has low complexity. The encoding process for our technique is adaptable in that  ea,& bit to be encoded 
has an associated probability-of-zero estimate that may depend on previously encoded bits; this adaptability 
allows more effective compression. Recursive interleaved entropy coding may have advantages over arithmetic 
coding, including most notably the admission of a simple and fast decoder. Much variation is possible in the 
choice of component codes and in the interleaving structure, yielding coder designs of varying complexity and 
compression efficiency; coder designs that achieve arbitrarily sinall redundancy can be produced. We discuss 
coder design and performance estimation methods. We present practical encoding and decoding algorithms, as 
well as measured performance results. 
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1. INTRODUCTION 
In data coniprcssioii algorithms the need frequently arises to  compress a binary sequence in wliich eacli bit lias 
sonie estimated distribution, i.e., probability of being equal to  zero. If long runs of bits have nearly identical 
distributions, then siinple source codes, most notabiy Goioin’b‘s runiength codes,’> ’ are quite efficient. However, 
in inany practical situations, not only does the distribution vary from bit to  bit,  but it is desirable to  have the 
estimated distribution for a bit depend on the values of earlier bits. 

Allowing the estimated distribution to  change with each new bit can result in more effective compression 
because a source model can make better use of the immediate context in which a bit appears, arid can quickly 
adapt to changing statistics. For example, when compressing a bit-plane of a wavelet-transformed image one 
would want t o  use an entropy coder that can efficiently encode a bit sequence with a probability estimate tliat 
varies from hit to  bit. 

Accorninodating a dynamically changing probability estimate is tricky because the decompressor will need 
to make the same estimates as the compressor. 111 general, before the i th  bit can be decoded, the values of the 
first i - 1 bits must be determined. Tliis requirement makes it difficult t o  efficiently use simple source codes such 
as runlength codes. To our knowledge, currently the only efficient coding methods that accommodate a bit-wise 
adaptive probability estimate are arithmetic coding*7> 9 ,  l1 and a rehtively obscure technique called interleaved 
entropy coding. l4-I6 

In this paper, we describe a new technique called recursive interleaved enkropy coding, which is a general- 
ization of interleaved entropy coding. A recursive interleaved entropy coder compresses a binary source with a 
bit-wise adaptive probability estimate by recursively encoding groups of bits with similar distributions, ordering 
the output in a way that is suited to the decoder. Much variation is possible in the choice of component codes 
and in the interleaving structure, yielding coder designs of varying complexity and compression efficiency. 
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The functionality of recursive interleaved entropy coding is essentially the same as that  of binary arithmetic 
however, there are niany practical differences. Arithmetic encoding of one bit requires a few arithmetic 

operatioiis and usually at least one multiplication. Our encoder requires no a,rithnietic operations except those 
which might be needed to  choose a code index based oii tlie estimated bit distribution; however it requires some 
bookkeeping and bit manipulation operatioiis. Our encoder requires more memory than arithmetic coding. 
Arithmetic decoders are generally of similar complexity to  the encoders, but our decoder is much simpler than 
our encoder: it needs fewer operations than the encoder, and requires only a sinall amount of memory. 

A more complete version of the results pr iited here is contained in Ref. 1. In a related paper,2 we 
describe inotlifiecl encoding and decodirig techniques with lower eiicoder memory requirements. 

In the remainder of this section, we give a brief overview of tlie entropy coding technique. Section 2 describes 
the details of encoder and decoder operation and presents practical encoding and decoding algorithms. In Sect. 3 
we exaiiiiiie a class of binary trees that appear to he well suited for use in coder designs. Section 4 gives methods 
for estimating the perforinance of a given coder design. hi Sect. 5 we describe a technique for designing an 
encoder that meets a given redundancy constraint. Section G provides performaiice results. Finally, Sect. 7 
provides a conclusion and identifies some open problems. 

1.1. The Source Coding Problem 
We examine the problem of conipressiiig a sequence of bits b l ,  62, from a random source. For each source bit 
bi  we have a probability estimate pi = Prob[b, = 01 which niay de d on the values of the source sequence prior 
to index i ,  and on any otlier information available to both the compressor and decoinpressor. This dependence 
encompasses both adaptive probability estimation as well as correlations or memory in the source. Because of 
this dependence, efficient coding requires a bit-wise adaptable coder. We are not conceriied here with methods 
of modeling the source, and so we make no distinction between the actual a i d  estimated probabilities. 

Without loss of generality, we assume that 11, 2 l / 2  for each index i. If this were not the case for some 
p,, we could simply invert bit bi before encoding to  make it so; this inversion can clearly be duplicated in the 
decoder. 

mine w h ~ n  decoding is corn-plete. In practice, this oken 
occurs automatically; otherwise, a straightforward method such as transmitting the sequence length prior to 
the compressed sequence can be used. 

Although we only discuss the compression of binary sequences, given any nonbinary source we can assign 
prefix-free biliary codewords to  source symbols to produce a binary stream. Thus a bit-wise adaptable coder 
such as the one we describe here can be applied to nonbinary sources as well. 

We also assume t,lmt the deconip,l-essnr C N . ~  d 

1.2. The Recursive Interleaved Entropy Coder Concept 
We iiow give an overview of how recursive interleaved entropy coding works. To simplify the explanation, we 
defer some of the details until Sect. 2. 

Since, by assumption, each bit has probability-of-zero at least 1 /2 ,  we are concerned with the probability 
region [1/2,1] .  We partition this region into several narrow intervals, and with each interval we associate a bin 
that will be used to store a list of bits. When bit b, arrives, we place it into the bin corresponding to  the interval 
containing p,. Beca,use each interval spans a sinall probability range, all of the bits in a given bin have nearly 
the same probability-of-zero, and we can think of each bin as corresponding to some nominal probability value. 

Bits in the leftinost bin, whose interval contains probability l / 2 ,  do not undergo further processing. For 
every other bin we specify an exhaustive prefix-free set of binary codewords. When the bits collected in a bin 
form one of these codewords, we delete these bits froin the bin and encode the value of the codeword by placing 
one or more new bits in other binst. In eflect, bits in a bin are encoded using a prefix-free variable-to-variable 
length code, with the added twist that  the output bits are assigned to  other bins where they may be further 
encoded. 

+The rules for collecting bits to  form a codeword are not straightforward and we save the details for Sect. 2.2. 



The mapping from codewords to  encoded bits is conveiiiently described using a binary tree. Each codeword is 
assigned to a terminal node in the tree, non-terminal nodes are labeled with a probability value that determines 
a destination bin, and the branch labels (each a zero or one) indicate the output bits that  a,re placed in the 
destination bins. For example, Fig. 1 shows a tree that might be used for a bin with nominal probability 0.9. 
The prefix-free codeword set for this bin is {00,01, l}, sliowii as labels of the terminal nodes i n  the tree. If tlie 
codeword to  be processed in the bin is 00, wliich occurs with probability approximately 0.81, we place a zero in 
tlie biii that  contains probability 0.81. If the codeword is I, first we place a one in tlie hili containing probability 
0.81, which indicates tha,t the codeword is sornetliing other than 00, then we place it zero in the  bin containing 
probability 0.53 because, given that the codeword is not 00, the conditional probability that  tlie codeword is 
1 is approximately 0.53. We can see that this process contributes to data  coinpression because the most likely 
codeword is 00, which is represented using a single bit. 

Figure 1: Example of a tree for a bin with representative probability 0.9. 

Bits that  reach the lekmost bin form the encoder’s output; we refer to this bin as the “uncoded” biii since 
these bits do not undergo further coding. These bits are zero with probability very close to  l / 2  and are thus 
nearly incompressible, so leaving these bits uiicoded does not add much redundancy. 

During the encoding process, bits arrive in various bins either directly from the source or as a result of 
processing$ codewords in other bins. Our goal is to have bits flow to the lekmost bin. To accomplish this, 
we iinpose the constraint on tlie noa-terminal node labels that  all new bits resulting from the processing of a 
codeword niust be placed in bins strictly to the left of the bin in which the codeword was formed. Apart from 

which would inalie coding difficult or impossible. 

As illustrated in the example above, a natural method of mapping output bits to bins is to  assign each 
output bit of a codeword to  tlie bin indicated by the output bit’s probability-of-zero, as computed from the 
nominal probability of the bin in which the codeword is formed. If we use this method, then a bin with nominal 
probability p must necessarily use a tree that  is “useful” at p according t o  the following definition: 

Definition: 

. . ((1 o::r dcsirc t a  EIOVC bits to  the left, this coristr~fit  H!SO preveiits encoded iiifiJi-iiiZttiuii fioiii LIavellrig 111  loop^", 

1. W e  say th,a,t a tree i s  useful at probability p i,f it has th,e property  th,a.t w h e n  all  i n p u t  bits have  psrobability- 
of-zero equal to  p ,  all ou tpu t  bits  h,me probability-of-zero in the  range [1/2,p). 

2 .  A tree i s  useful i f  th,ere exists some p f o r  which t h e  t,ree i s  usefud a t  p .  

3. If t h e  branches of a tree lack ou tpu t  bit labels, t h e n  we  say tha,t t he  tree i s  useful (Tesp. useful a t  probability 
p )  <f s o m e  a s s i g r m e n t  of ou tpu t  bit la,bels makes  the  tree u,seful cresp. useful a t  probability p ) .  

Perhaps surprisingly, requiring output bits to be mapped strictly to  the left turns out to be a reasonable 
constraint - we’ll see in Sect. 3.1 that for any p E (1/2,1) there exists a tree that  is useful at p. 

In practice, bins are identified by indices rather than noiniiial probability values, starting with iiidex 1 for 
the leftmost bin. At each non-terminal node in a tree we identify the index, rather than the nominal probability 
value, of the hili to  wliicli the associated output bit is mapped. The constraint on encoder design is now that 

$We refer to the encoding of a codeword in a bin as “processing” the codeword, rather than encoding, to avoid 
confusion with the overall encoding procedure. 



each output bit from the tree for bin ,j must be iiiapped to a bin with index strictly less thaii j .  No computations 
iiivolviiig probability values are needed for encoding apart from those which inay be required t o  map input bits 
to  the appropriate bins. 

Tlie mapping of output bits to bins can be designed without regard for noiiiinal probability values, so it is 
possible to design working coders that  include trees which are not useful. In fact, good coders can be designed 
that do not contain useful trees. However, one expects better coinpression if output bit probabilities are in 
close agreement with their destination bins’ nominal probabilities; this appears to be most easily achieved by 
exploiting useful trees. 

Near the end of encoding a sequence of bits tliere m a y  be bins that contain partial codewords that must be 
‘(flushed” from the encoder. When this occurs, we append one or more extra bits to the partial codeword to 
form a complete codeword which is then processed in the normal manner. 

of-zero are treated the same; that is, the bins’ intervals have positive widths. As oile might expect, by increasing 
the number of bins in the coder design we can decrease the redundancy to  xbitrarily small values. This result 
is formalized ill Sect. 3.2. 

Clearly the encoder’s output contains soiiie redundancy because source bits with slightly different probabilities- 

1.3. Relation to Interleaved Entropy Codes 
An important special case of our entropy coder arises wlieii all output bits generated from each tree are mapped 
to the uricoded bin. In this case the coder essentially interleaves several separate variable-to-variable length 
binary codes. This technique was first suggested in Ref. 15, where Golomb codes are interleaved, and has 
also appeared in Ref. 16. Howard14 gives a more thorough a,iialysis of this technique, which we refer to  as 
non-recursive interleaved entropy coding. A noli-recursive coder design allows reduced complexity encoding; in 
Sect. G we show that in fact noli-recursive coders can achieve very high encoding speeds. 

By using an increasing number of increasingly complex variable-to-variable length codes, it’s clear that  we 
call make asymptotic redundancy arbitrarily small with a non-recursive coder (provided that the estimates 
of the source distribution can be made arbitrarily accurate). With the additional flexibility of the recursive 
technique preseiited here: a given rediindancy ta,y;rt, tends t~o  he achievc?hle with fewer ~ndx/or simpler codes. 

2 .  ENCODING AND DECODING 
Section 1 gave a,ii overview of how recursive interleaved entropy coding works. In this section we describe the 
encoding and decoding procedures in more detail aid give practical algorithms for encoding and decoding. 

It should be noted that  the encoding algorithm presented here requires memory resources that are propor- 
tional to the length of tlie source bit sequence. In R.ef. 2 we describe alternative encoding algorithms (with 
corresponding decoding algorithms) that have inuch more niodest memory requirements. 

We first state more precisely how a coder is specified. A recursive interleaved entropy coder specification 
consists of 

1. A rule for mapping source bits to  bins that are numbered from 1 to B. 

2.  For each bin with index greater than 1, an exhaustive prefix-free set of hinary codewords and a binary 
tree that describes rules for processing each codeword by placiiig one or more bits in lower-indexed bins. 

While we usually think of each bin in the encoder as corresponding to  some probability interval, such a 
relationship is not required, and tliere need not be any implicit probability estimate used to  map bits to  bins. 

Since we are not, concerned with source modeling, we will frequently present coder designs without specifying 
a rule for mapping source bits to bins. In this case we assume that  each source bit is niapped to  the bin that 
iiiiiiimizes redundancy given the source bit probability-of-zero p i .  

As a running example to  illustrate tlie encoding and decoding procedures, we use the following five bin coder 
design which we refer to  as C5: 



Coder Design C5: This coder design is illustrated in Fig. 2, where the trees shown identify the relationship 
between codewords and output bits. For example, Fig. 2(c) indicates that  if codeword 01 is formed in bin 4 
then we place bits l , O , l  in bins 3,2,1 respectively. 

(a) bin 2 (b) bin 3 

01 

Figure 2 .  The five bin coder design C5. Output bits are shown in boldf'ace, the corresponding bin indices are in italics. 
The input codewords are shown at terminal nodes of' the trees. The first bin of a coder design does not have an assockted 
tree. 

2.1. Decoder Operation 
We first describe the decoding procedure since it determines how encoding must be performed. We rega,rd each 
biii in tlie decoder as containing a list of bits. To begin, all of the encoded bits are placed in the first (uncoded) 
bin, and all other bins are empty. At any time, each iioiienipty bin (with the exception of the  uncoded bin) 
will coiitaiii a single codeword or a suffix of a codeword. To decode a source bit, we take the next bit from the 
hili to which the source bit was assigned. If this biii is empty, we first reconstruct the codeword in that biii by 
taking bits froiii other bins as needed. This in turn may require reconstructing codewords in those bins, and so 

Decoding call be accomplished using two recursive procedures, GetBi t  aiid Get Codeword, shown in Fig. 3. 
GetBit  simply takes the next available bit from the indicated bin. If this bin is empty then it first calls 
Get Codeword. Given an empty bin, Get Codeword determines which codeword must have occupied tlie bin by 
taking bits froiii other bins (via Ge tBi t ) ,  and then places that codeword in the bin. The Getcodeword p~oced.iurc 
is similar to  Hufhiian decoding, except that  at each step we take the next bit from the appropriate bin, not 
(necessarily) from the encoded l i t  stream. 

To decode the i th  source bit, let b i n i n d e x  equal tlie iiidex of the biii to which this source bit is assigned 
according to the biii assignment rule for the coder. Then the i th decoded bit is equal to GetBi t  (b in index) .  

on. 

2.2. Encoder Operation 
The encoding procedure outlined in Sect. 1.2 illustrated tlie codeword processing operations involved in encoding, 
but did not discuss the order in whicli bits are collected to form codewords. This order is important; we must 
encode in a way that  allows the decoder to  determine the value of source bit bi-1 before attempting to decode 
source bit b i ,  since tlie bin to  which a source bit is mapped may depend on tlie values of previous source bits. 

During encoding, each bin is viewed as containing a list of bits, but when a bit arrives in a bin as ail output 
bit from another bin, the bit might be inserted into the list at a position other than the end of the list. 

One method of encoding is to  first place all input bits in the appropriate bins, then process codewords starting 
with those in the highest-indexed bin aiid working toward bin 1. At each step we identify tlie lionempty bin with 
tlie largest iiidex and we t-ake bits (in priority order) from this bin until we have formed a codeword, appending 
flush bits if needed to complete the final codeword of the bin. 

For software encoding, we maintain a linked list of bit values. Each record in tlie list stores a bit value aiid 
tlie index of the biii that  contains the bit. Initially the list contains the entire input sequence in order of arrival. 
When a codeword is processed, we delete the bits that  formed the codeword and insert the resulting output bits 
in the list at the location of the first bit in the codeword. 

For example, suppose an encoder using design C5 has its linked list in the state shown in the left l d f  of 
Fig. 4. The largest bin index in this list is 4, so we search through the list for bits in bin 4 until we forin the 



GetBit (binindex) : 

1. If the bin with index binindex is empty then call GetCodeword(binindex). 

2. Remove the first bit in the bin with index binindex and return the value of this bit. 

GetCodeword(binindex) 

1. Initialize nodepointer to point to  the root of the tree for the bin with index binindex. 

2. While nodepointer is not pointing to a terminal node, do the following: 

(a) Let thisbinindex equal the bin index indicated by the node at nodepointer. 

(b) Assign bitvalue = GetBit(thisbinindex). 

(c) Let nodepointer point to  the node indicated by the branch with label equal t o  bitvalue. 

3. At this point nodepointer points to a terniiiial node, which means that we have reached a 
codeword. Place this codeword in bin binindex. 

Figure 3: The GetBit and Getcodeword procedures used for recursive decoding 

codeword 01. This codeword produces output bits l , O , l  in bins 3,2,1 respectively; the new state of the linked 
list is shoivii in the right half of Fig. 4. 

Figure 4. One step of software encoding using coder design C5. In each pa.ir, the left (unshaded) box indicates bit 
value; the right (shaded) box shows bin index. 

When all bits are in the first bin, the encoder output consists of these bits iii priority order. 

Ref. 1 gives a set of rules to which an encoder must coliform, and describes other encoding techniques 
that conforin to  these rules. Encoding variations amount to  changing the order in which certain processing 
operations are performed, and using different niethods for identifying codewords to  be processed. The encoding 
niethods all yield the same encoded bit stream, apart from differences arising due to  different choices of flush 
bits. In Ref. 2 we describe encoding methods that make more efficient use of memory. 

We now turn to the task of assigning flush bits when needed to  complete the last codeword in a bin. When 
they are required, any choice of flush bits that  forms a complete codeword will produce a decodable sequence. 
The decoder does not need to ltnow the encoder’s method of selecting flush bits ~ they are simply the bits 
remaining in the decoder after decoding is complete. This means that decoder speed is essentially unaffected 
by whether the encoder uses a quick or a highly optimized method to  choose such bits. 



We would like to  choose flush hits in a way that minimizes the leiigtli of the encoded sequence. however, in 
general the optimal assigiiiiieiit of flush bits in a given bin niay depend on the contents of lower-indexed bins. 
In Ref. 1 we describe a simple but suboptimal greedy rule for assigning flush bits. The greedy rule allows one 
to assign flush bits during encoding using a look-up table and seems to  produce an encoded length that is at 
worst only a few hits longer than the length obtained from optimal flush bit assignment. 

3. USEFUL TREES 
Recall from Sect. 1 that a tree wliose branches lack output bit lahels is useful at probability p if soiiie assigiiiiieiit 
of output bit labels results in all output hits having probability-of-zero in the range [1/2,p) when the input bits 
all have probability-of-zero equa.1 to  p .  

From the overview of coder operation given in Sect. I, we expect a biii to be associated with some probability 
interval, and we require that, all output bits generated at  a biii must be mapped to  bins with strictly lower 
indices, which we expect to he associated with smaller probability values. T l i ~ i ~ ,  if tliere a,re probability d u e s  
for which useful trees do not exist, it  may be difficult to produce coder designs achieving very sinall redundancies. 

Fortunately, it turns out that  there is essentially no restriction on the probability values at which a useful 
trec can be found. There exist fa,niilies of trees such that for any p t (1/2, l), there is a tree in the family that 
is useful at  p. We call such a family com,plete. A coiiiplete family of trees is iiecessarily infinite. 

3.1. Useful Trees Exist Everywhere 
We now describe a particular family of useful trees. For integers a > n?, 2 1 we form the tree I,,,, as shown in 
Fig. 55. 

... (( 
on-*l 

Figure 5 :  The tree I,,,, (a) for r r ~  = 1, and (b) for in  > 1. 

For rti = 1 and n > ?ti, I,,,, is useful in tlie interval ( Y ~ ~ ~ / ~ ~ ,  1). For n > ?n > 1, Tn,, is useful in tlie interval 
(Y,~~~/~,Y(~~~-~)/(~-~)). Here, for a E [0, l), ya denotes the root of p = (1 - p)" that  is in the range (1/2, I]. 

It can be verified that ynl;ln decreases as m/n approaches I, and that 3/m/,% approaches l / 2  as nz/n ap- 
proaches 1. Consequently, for any fixed integer d > 0, the set {7m;m+d}7T, ,=l  forms a complete family of useful 
trees. Figure 6 illustrates how the useful regions for the trees in tlie important family {lm,7n+1}nl;=1 span 

00 

00 

(I/% 1). 
Some other examples of useful trees are given in Ref. 1. 

lThe authors gratefully acknowledge Sam Dolinar for pointing out this generalization of the Im,m+l trees 



... ... 

... ... 

Y( i )  /(i+l) Y(i-Z)/ (i- 1) 

Figure 6: Useful regions of trees in the family {Z,,,nx+~}E=l. (Not to  scale.) 

3.2. Application of Useful Trees to Coder Design 
We noted in Sect. 1.3 that  redundancy can be made arbitmrily small (subject to the accuracy of the source 
distribution estimates) using nonrecursive interleaved entropy coders; however the codes required quickly becoiiie 
complex. On the other h i d ,  we saw in Sect. 3.1 that we can easily construct a complete family of useful trees 
with manageable complexity. The following theorem, which we prove in Ref. 1, establishes tha t  such a family 
of trees provides anotl-ier metl-lod of producing coder designs achieving arbitrarily small redundancy when we 
exploit recursion in the coder. 
THEORFM 3.1. L e t  U be a com,plete fa,mily of useful trees wi thout  outpu,t bit  specifications. Th,en for an,y E > 0 
arid 6 > 0 there exists a coder design that  u ses  only trees from U, a n d  a constant  e, , for  w h i c h  the  folloiuing 
h,olds: For  timy ,n a,rd a n y  sequence of bits b l ,  , b,, whose associated p,roba,bility-of-zero e s t ima tes  p1,  . . . ,p,, 
are all in th,e range [S, 1 - ti]) the  coder will compress the  sequence t o  ut m o s t  

It should be emphasized that this theorem is not probabilistic and there need not be any relation between tlie 
bit values and their probability-of-zero estimates. However, if, for example, we genemte independent random 
ULLS u l ,  . . . ,6, aiid let pi = Prob[b, = 01, then the theorem implies that  the expected number of encoded 
bits per source bit can be made to approach the source entropy. Similar results hold under more complicated 
assumptions, so long as the probability estimates are accurate for each bit. Even if the estimates are not 
accura,te, the sun1 in Eq. (1) represents, in a rather loose sense, the best average encoded length achievable by a 
coder which relies on the estimates.' An ideal arithmetic coder that uses the same probability estimates would 
produce encoded length slightly hrger than tlie sum in Eq. (1). 

Using Tlim. 3.1 it can be shown that redundancy can be made arbitrarily small in other senses as well. For 
example, assuming accurate probability estimates, the average number of bits of redundancy per source bit can 
be made arbitrarily small without any restriction on the source bit probabilities. 
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4. ESTIMATING COMPRESSION EFFICIENCY 
In this section we turn to  the problem of quantifying the compression efficiency of a recursive interleaved entropy 
coder. We would like to  analytically determine the redundancy resulting from a given coder design, but this 
depends on the source and does not appear to be easy to  calculate exactly in general. 

One metric that gives a good indication of performance, and for which we can find reasonable estimates, is 
the rate (the expected number of output bits per source bit) when the input to  the encoder is a,n IID stream of 
bits into bin j ,  each bit having probability-of-zero equal to p .  We denote this quantity by R j ( p ) .  

Because of the recursive nature of tlie encoder, our estimates of R:j(p) rely on rate estimates for other bins. 
A given bin may have bits with different probabilities-of-zero arriving from higher-indexed bins. If bin j has as 
input A1 bits each with probability-of-zero 41 and Xz bits each with probability-of-zero q 2 ,  then the resulting 
contribution to the number of output bits might be approximated as 

X l 4 ( Y l )  + X 2 4 ( 9 2 )  (2) 



The first approximation would tend to be more accurate when long runs of bits in bin j liave the same probability- 
of-zero, and the second would be more accurate if the two types of bits are well mixed. 

In this section we describe two techniques for estimating Rj (p) that  are direct a.pplications of the respective 
approximations above. Extensions of these techniques can be used t,o accurately estimate the rate  obtained for a 
source tliat produces bits with varying (hut known) distributions. The rate estimates produced are asymptotic 
as the input sequence length becomes large, i.e., the cost of bits used to flush the encoder is not included. 

The rate estiination techniques do not usually give exact results, in part because bits arriving in a bin may 
not be illdependent even when the source bits are independent. This dependence can arise, e.g., when processing 
a single codeword results in more than one output bit being placed in the same bin. Iri practice, however, both 
techniques usually give quite good estimates. 

4.1. Two Rate Estimation Methods 
In our first method of rate estimation, we estimate Rj(p) from the estimates for R,(p), R z ( p ) ,  
lion-terminal node k of the tree for bin , j ,  let ~ ~ ( 1 2 )  denote the expected niimber of output bits per input bit, 
q k ( p )  denote the probability-of-zero of these bits, and Bk denote the destination bin of these bits. We use the 
estimate 

wliere the sum is over all non-terminal nodes in the tree. 
Our second technique for estimating Rj(p)  is based on Eq. (3) .  For each bin we produce a list of ( X , q )  

pairs; where in each pair X represents a i d  expected number of bits per source bit and q is the corresponding 

= 2. At a given 
step, suppose the list for bin e contains pairs ( X I ,  Q), (Xz, sa), . . . , (A,,, qrL) .  We compute the total expected 
number of bits in the biii per source bit, 

probability-of-zero. !niti2b!ly each list is em;;tj: except the list for bin j ,  \,liicJi coi1taiiis the pail. (1, pj, 

We now let ! step througli bin indices, starting with e = j and working down through 

i= 1 

and the average probability-of-zero in the bin, 

Treating the input to  biii ! as A, bits, each with probability-of-zero &e,  we compute the expected number of 
bits X i  and associated probability-of-zero q(, at each non-terminal node k in the tree and append (Xi;, 4;) to  the 
list for the bin to  which the output bit associated with node I; is mappedT. Then we decrement 1 to  move to 
the next bin. 

After we finish stepping through the bins, our estimate of Rj ( p )  equals AI , the total expected number of 
bits in the first bin computed using Eq. (5). 

This technique can easily be adapted to  estimate the rate associated with a source that  produces bits with 
varying (but known) distributions. For a source that produces bits with probabilities-of-zero 41,. . . , with 
frequencies fl, . . . , fk we simply initialize our lists so tliat each pair (fi, &) is put in the list for the bin to  which 
probability q5i is mapped. 

"If bits generated at node k are assigned to bin I, then computation of qI is not necessary 



4.2. Performance Example 
Tlie rate estimation tecliniyues of Sect. 4.1 allow computation of estimates of the redundancy pj(p) = R , ? ( p )  - 
‘H~/2(p) for each bin j of a coder. We typically plot reduiidaiicy for a coder design a,s a functioii of p, under the 
assumption that source bits are mapped to the bin that minimizes tlie estimated rate. Generally, each R, ( p )  
is nearly linear in p ,  so minj Rj(p) is nearly piecewise-linear. The rate fuiictioii niinj Rj(p) tends t o  lmg tlie 
binary entropy curve, resulting in a redundancy curve with a “sawtooth” appearance. 

To deinoiistrate the accuracy of the estiinatioii tecliniques, we have estimated redundancy for coder design 
C5 and measured the actual reduiidancy by simulation. Figure 7 shows the results. Tlie results of the two 
estimation techniques are indistinguishable at tlie scale of the figure, and are in close agreement with tlie 
measured redundancy. For bins 1-3, both recluiidancy estiniates can be shown to be equal to  the actual 
redundancy. 

probability-of-zero 

Figure 7. Estimated (solid curve) and measured (individual points) redundancy for coder design C5. Each point \vas 
generated using 500 sequences, each of length 2” bits. 

5. DESIGNING CODERS 
In this section we describe a practical procedure for finding a coder design wliose redundancy meets a given goal 
and we exhibit some coder designs obta,ined using this design procedure. As discussed in Sect. 4, evaluating 
the exact redundancy of a given coder design is a difficult problem. Thus, we consider only tlie redundancy 
obtained for sources with a fixed probability-of-zero, and we rely on t,he ra,te estimates of Sect. 4, which in 
practice are quite close to  the rates achieved. 

The redundancy goal is specified by a quantity A that represents the inaxiiiiuin allowed asymptotic redun- 
dancy, in bits per source bit. The procedure requires a set of candidate trees t o  be used in the coder. In 
this context the trees do not include assignments of bin indices to  noli-terminal nodes or output bit labels to 
branches; these assignments will be made as part of the design procedure. To use the design procedure with 
arbitrarily small va.lues of A, the set of caiididate trees should have the property that for any p E (1/2, I) some 
tree in the set is useful at p - that  is, the set contains a complete family of useful trees. In practice, it is often 
convenient to  limit consideration to  a finite candidate tree set. 

Each hili j will have associated with it aii interval specified by the left endpoint zj -1 and right endpoint 2.j. 

For j > 1 a, tree will also be associated with bin j .  No design work is required for bin 1, since zo = 1/2  and 
bin 1 is uiicoded. To design to  rest of the coder, we add bin specifications in order of increasing bin index by 
selecting R tree, assigning biii indices and output bit labels to  the tree, and computing the left endpoint of the 
bin’s interval. For example, Fig. 8 shows a case where tlie coder design has been specified for the first three bias, 



and our redundancy target A is met for source probabilities-of-zero less than p*. Tlie next task is to  specify a 
tree that meets the redundancy target for ail interval that includes p*; as a result we will have z3 5 p*. 

A 
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Figure 8: Reduridancy of a coder after specifying trccs for bins 2 and 3. 

Given tliat the first j - 1 bins of the coder satisfy the redundancy target up to  probability-of-zero p*, the 
tree for bin j needs to  yield redundancy of at most A at p* . This can be accomplished by selecting a tree that is 
useful at  p* and, treating the iiiput bits to  the tree as all having probability-of-zero p* ,  assigning branch labels 
so that each output bit is inore likely to  be a 0 than a 1. Then, at  each noli-terminal node we assign the output 
bin index so that  the probability-of-zero of the output bit is in the interval [ z g - ~ ,  zg) (for this assignment we 
temporarily let zj = p*). This construction maps output bits to bins iii regions where the redundancy is less 
than the target A, and it can be sliown that,  (to the extent that  Eq. (4) is accurate), the tree we have selected 
for the new bin produces redundancy less than A at p*. Since the rate function for each bin is continuous, we 
have extended the range where the coder meets the redundancy target. 

Tlie above procedure can always be used to find one or more trees (labeled with output bits and destination 
bins) that  extend the range over which the coder meets the redundancy target. However, additional trees, or 
trees with alternate output bit and bin assignments, might also meet the redundancy goal at p * .  A possible 
method of finding such trees is to  select a tree and assign bins and output bits as in the above procedure, but 
using a target probability somewhat larger than p* . 

A reasonalsle method of choosing among several trees which meet the redundancy goal a,t p* is to pick 
the tree which extends the useful range of the coder the furthest. The procedure is then essentially a greedy 
a,lgorithni, and there is no guarantee that the number of bins in tlie coder will be minimized. In addition, the 
design procedure does not give Consideration t o  minimizing encoding or decoding complexity, which niay be 
quite different than minimizing the number of bins. 

6. ENCODING AND DECODING SPEED 
We now examine the encoding and decoding speeds obtained from coders of various compression efficiencies. 
We have measured the encoding and decoding speeds of software implementations of our coding technique and 
of arithmetic coding. We have also measured the redundancy achieved by the coders. All timing tests were 
performed on a Sun Ultra Enterprise with a 167 MHz Ultra,SPARC processor. 

For our test source sequences, we generated sequences of 500,000 probability values pi froiii a uniform 
distribution on [0,1], and produced random bits bi according to these values. We compute bin assignments 
outside of tlie timing loop as the optimal assignment given pi to  isolate the speed and efficiency of the actual 
coding from tlie source modeling. 

For comparison, we also evaluated the “shift/add” binary arithmetic coder from Ref. 11 with parameters 
b = 16, and several different values of f (see Ref. 11 for definitions of these parameters). The arithmetic coder 
was modified to  be similarly isolated from the modeling; bit probabilities were supplied in a form convenient to 
the coder. We selected the coder from Ref. 11 because i t  is reasonably fast, it is widely used by other researchers, 



the source code is publicly available, and it was relatively easy to isolate the coder froin the source modeling. 
Other arithmetic coder implemeiitatioiis (e.g. Ref. 10) may be soiiiewhat faster. 

Figure 9 shows redundancy versus decoding speed for two recursive coder designs as \vel1 a.s the arithmetic 
coder. The recursive coder designs are the 6-bin aiid 10-bin coders specified in Tables C-3 aiid C-2 respectively 
of Ref. 1. The 6-hin coder design yields a fast decoder in part because the coder design is recursive only in 
the last biii; note however that our software does not explicitly take advantage of this property. Figure 9 shows 
that recursive interleaved entropy coding can offer a noticeable improverneiit in decoding speed over arithmetic 
coding. For iiiaiiy data coiiipressioii applications, e.g. ,  image retrieval from databases, decoding speed is iiiucli 
more important tliaii encoding speed, and recursive interleaved entropy coding appears to  be an attractive 
alternative to  arithmetic coding in such a situa,tioii. 
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I I I I 
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Figure 9: Decoding performance of two recursive coder designs and the arithmetic coder from Ref. 11 

For spacecraft applications, however, encoding speed is paramount. Figure 10 shows redundancy versus 
eiicodiiig speed for the two recursive coder designs tested above, for two lion-recursive coder designs with a 
specialized encoder, and for the arithmetic coder. We observe that the recursive coders offer encoding speed 
comparable to  that of arithmetic coding. For a recursive coder design, we expect that  encoding is inherently 
slower than decoding. 

The noli-recursive coder designs in Fig. 10 are specified in Ta,ble C-3 of Ref. 1. Here encoding speed is 
nieasured for an encoder specifically tailored to  exploit nor-recursive designs. We see from the figure that  the 
non-recursive coder designs shown here provide encoding that  is more than twice as fast as that of the arithmetic 
coder. As noted earlier, non-recursive interleaved entropy coders have been investigated in Refs. 14-16; however, 
previous iinpleiiieiitatioiis have used less geiieriL1 conipoiient, codes than our implementations and the potential 
for fast encoding (and decoding) does not appear to have been fully appreciated. 

A non-recursive coder design that meets a given redundancy target requires larger trees, and usually a 
larger iiuinber of bins, than a recursive design. For example, achieving low redundancy when the source has 
prohability-of-zero close to  one requires the use of very large trees in noii-recursive coders, but not in recursive 
coders. However, at the present stage of developiiierit non-recursive coders appear to  have an advantage when 
encoding speed is our primary coiicern. 

These results give some indication of the performance achievable using recursive aiid non-recursive interleaved 
entropy coding. We have good reason to  be optimistic that  even better coder designs are possible. First, note 
that our coder design procedure essentially ignores encoding and decoding complexity. Second, the iiumher of 
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Figure IO. Encoding performance of two recursive coder designs, two non-recursive coder designs, and the arithmetic 
coder from Ref. 11. 

useful trees grows very quiclrly as we increase the size of the tree, and from Sect. 1 .2  that  good coder designs 
may include trees that are not useful. Thus the number of potential coder designs quickly becomes large as we 
increase the size of the candidate trees. 

7 .  CONCLUSION 
We have presented a new entropy coding technique that provides the same functionality R S  hlmry arit!imetic 
coding. The technique accommodates an adaptive probability estimate, which allows a data compression algo- 
rithm to exploit sophisticated source models, enabling efficient compression. The technique can in theory achieve 
arbitrarily small asymptotic redundancy as coder designs increase in complexity. We have described a rate esti- 
mation technique and a practical coder design procedure. Using the design procedure we have found relatively 
simple coder designs that yield efficient compression. Compared to arithmetic coding, our technique provides 
competitive encoding speed and noticeably better decoding speed. For the special case of a non-recursive coder 
design, we can achieve significantly faster encoding than with arithmetic coding. 

We see that  recursive interleaved entropy coding appears t o  be a viable alternative to  arithmetic coding. As 
recursive interleaved entropy coding is still a very new technique, it is reasonable to  expect further improvements, 
perhaps from both discovering better coder designs and developing algorithmic improvements. By comparison, 
arithmetic coding has been maturing for over two decades. Our encoding speed tests of non-recursive interleaved 
entropy coding indicate that tlie extent of the benefits of that  technique has not been previously appreciated. 

Although we have exhibited a practical coder 
design procedure, it is likely that  this procedure could be improved upon, either through refinements or with 
a fundamentally different procedure. In particular, it may be possible to  determine good heuristics for finding 
fast and efficient coder designs for a given application. A related research task is to  better characterize the 
various aspects of complexity of coder designs. Such a characterization might allow a design procedure to  take 
encoding and decoding speeds into account. In addition, variations in the underlying encoding and decoding 
procedures may yield speed iiiiproveineiits. Finally, we would like t o  identify trees (whether useful or not) 
that are well suited for inclusion in coder designs, and we would like to  have a better understanding of useful 
trees. For example, we would like to identify new (or generalized) families of useful trees, and find a better 
characterization of useful trees. 

Severa,l interesting directions for future resea,rch remain. 



ACKNOWLEDGMENTS 
The work described was funded by the IPN-ISD Technology Program and performed at the Jet Propulsion 
Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Adinin- 
istration. 

REFERENCES 
1, A. Kiely, M. Klimesh, “A new entropy coding teclinique for data compression,” Th,e Jn,te,rPlanetu,,ry Netuork 

Progress Report 42-146, April-.June 2001, pp. 1-48, Jet Propulsion Laboratory, Pasadena, California, 2001, 
littp://ipnpr.jpl.iiasa.~ov/progress report/42-146/146G.pdf 

2. A. Kiely, Ad. Illimesh, “Meniory-efficient recursive interleaved entropy coding,” The Jr&rPlu,netar.y Network 
Progress Report 42-146, Ap,ril-Ju,ne 2U01, pp. 1-14, Jet Propulsion Laboratory, Pasadena, California, 2001. 
l-ittp://ipnpr.jpl.nasa.gov/pro~ress report/42-146/146J.pdf 

3. P. G. Howard and J. S. Vitter, “Arithmetic coding for data compression,” Proc. IEEE 82, pp. 857-865, 
1994. 

4. S. W. Golomb, “Run-length encodings,” IEEE Truns. Inform. Th,eory IT-12,  pp. 399-401, 1966. 
5. R. G. Gallager and D. C. Vaii Voorhis, “Optimal source codes for geometrically distributed integer alpha- 

6. G. G. Langdon, “An introduction to  arithmetic coding,” IBM J .  Res. Dev. 28, pp. 135-149, 1984. 
7. J. Rissaiien and G. G. Langdon, “Arithmetic coding,” IBM J .  Res. Dev. 23, pp. 149-162, 1979. 
8. J. Rissanen and G. G. Langdon, “Universal inodeling and coding,” IEEE Tru,ns. Inform. Theory IT-27, 

9. I. H. Witten, R. M. Neal, J. G. Cleary, “Arithmetic coding for data compression,’’ Comrri,. ACM 30, 

10. W. B. Pennebaker, ,J. L. Mitchell, G. G. Langdon, and R. B. Arps, “An overview of the basic principles of 
the Q-coder adaptive binary arithinetic coder,” IBM J .  Res. Dev. 32, pp. 717-726, 1988. 

11. A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,” ACM Tru,ns. Injorm. Sys. 16,  
pp. 256-294, 1998. 

12. M. Boliek, J. D. Allen, E. L. Scliwartz, M. J. Gormish, “Very high speed entropy coding,” Proc. IEEE Int. 
Conf. Inmye Proc. (ICIP-gd), pp. 625-629, Austin, Texas, 1994. 

13. L. Bottou, P. G. Howard, Y .  Bengio, “The Z-coder adaptive binary coder,” Proc. IEEE Dada Compression 
Conf., pp. 13-22, Snowbird, Utah, 1998. 

14. P. G. Howard, “Interleaving entropy codes,’’ Proc. Compression and Complexity o,f Sequences 1.997, Salerno, 
Italy, pp. 45-55, 1998. 

15. F. 0110, S. Kino, M. Yoshida, and T. Kiniura, “Bi-level image coding with MELCODE - comparison of 
block type code and arithmetic type code,” Proc. IEEE Global Telecom. Conf. (GLOBECOM ‘89), pp. 0255 
- 0260, Dallas, Texas, 1989. 

16. I<. Nguyen-Phi, H. Weinrichter, “A new binary source coder and its application t o  bi-level image coinpres- 
sion,” Proc. IEEE Globad Telecom,. Conf. (GLOBECOM ‘9G), pp. 1483-1487, London, England, 1996. 

bets,” IEEE Trans. InfoTrm. Th,eory IT-21,  pp. 228-230, 1975. 

pp. 12-23, 1981. 

p11. 520-540, 1987. 




